ISYE 3044 SIMULATION ANALYSIS AND DESIGN

Prepared Prof. Christos Alexopoulos, Fall 2013

Credit: 3-0-3

Prerequisite(s): ISyE 2028 or 3030 and ISyE 3232

Catalog Description:

Discrete event simulation methodology emphasizing the statistical basis for simulation modeling and analysis. Overview of computer languages and simulation design applied to various industrial situations.

Texts:

- Banks, J., Carson, J. S., Nelson, B. L., and Nikol, D. M. *Discrete-Event System Simulation*, 4th edition, Prentice-Hall, 2010.
- Pegden, C. D., and Sturrock, D. T. *Rapid Modeling Solutions: Introduction to Simulation and Simio*, Simio LLC (included with software).
- Joines, J. A. and S. D. Roberts, *Simulation Modeling with SIMIO: A Workbook*. Available online at <u>www.simio.com/academics/workbook/index.html</u> (optional).

Objectives

(1) Introduction to simulation models and simulation studies; (2) Organization of simulation languages; (3) Modeling with a state-of-the art simulation package with 3-D, true-to-scale animation capabilities such as Simio; (4) Statistical aspects including input data analysis, generation of realizations from statistical distributions, output data analysis, and simulation-based optimization.

Academic Honor Code and Student Faculty Expectations

You can find Georgia Tech student body developed Honor Code: <u>http://osi.gatech.edu/content/honor-code</u>. You can also find Georgia Tech student and faculty developed Student-Faculty Expectations at: <u>http://www.catalog.gatech.edu/rules/22/</u>

Attendance

We will follow the institute attendance policy <u>http://www.catalog.gatech.edu/rules/4/</u>. The accepted absences include

- 1. Email notification from Dean's office. The accommodation depends on the suggestions in the email.
- 2. Institute Approved Absences <u>https://registrar.gatech.edu/info/institute-approved-absence-form-for-students</u>.

Special Needs

If you have special needs, please contact the Office of Disability Services: http://www.catalog.gatech.edu/policies/disabled-assistance

Topical Outline The topics and approximate number of weeks of coverage are in the table below.

Topics	Weeks
General principles and simulation languages	1
Estimation of error and risk in simulation experiments; simulation with	1.5
spreadsheets	
Queueing models	0.5
Random number generation	0.5
Random variate generation	1
Input modeling	1.5
Verification and validation	0.5
Output analysis for a single system	1
Comparison and evaluation of alternative system designs	1
Introduction to Simio	1
Animation in Simio	0.5
Entity routing logic	1
Advanced Modeling Techniques: Simio Processes	1
Modeling with Tables and External Data	1
Simulation of Systems with Vehicles and Conveyors	1
	14

Outcomes

At the end of this course, students will be able to:

- 1. Evaluate the effects of randomness on system behavior and performance.
- 2. Develop credible and valid simulation models.
- 3. Fit statistical distributions to input data.
- 4. Analyze output data from simulations.
- 5. Compare alternative system designs using simulation.

Course outcome \ Program Outcomes	1. identify, formulate solve engg prob by engg, sci & Math	2. produce solutions consider public health, safety, welfare, global, cultural, social, environ & economic	3 communicate with a range of audience	4 recognize ethical & professional responsibilities, make informed judgement consider resolutions in global, economic, environ and societal context.	5. effective on a team provide leadership, collaborative and inclusive envirn, plan tasks & meet objectives	6. develop and conduct experiment, analyze and interpret data & use engineering judgement to draw conclusions.	7. acquire and apply new knowledge using appropriate learning strategies
1. Evaluate the effects of randomness on system							
behavior and performance						М	
2. Develop credible and valid simulation models					Н	Н	
3. Fit statistical distributions to input data	Н						
4. Analyze output data from simulation	Н					Н	
5. Compare alternative system design using simulation		Н					

Evaluation of the important outcomes

Course outcomes 3 and 4 will be assessed on direct questions on final exam. 2 and 5 are assessed by the project or modeling assignment.

Comparison of old ABET Student Outcomes a – k to new 1 - 7					
OLD Criterion 3. Student Outcomes	NEW Criterion 3: Student Outcomes The				
The program must have documented	program must have documented student				
student outcomes that prepare graduates to	outcomes that support the program educational				
attain the program educational objectives.	objectives. Attainment of these outcomes				
Student outcomes are outcomes (a)	prepares graduates to enter the professional				
through (k) plus any additional outcomes	practice of engineering. Student outcomes are				
that may be articulated by the program.	outcomes (1) through (7), plus any additional				
	outcomes that may be articulated by the				
	program.				
(a) an ability to apply knowledge of	(1) An ability to identify, formulate, and solve				
mathematics, science, & engineering	complex engineering problems by applying				
(e) an ability to identify, formulate, and	principles of engineering, science, and				
solve engineering problems	mathematics.				
(c) an ability to design a system,	(2) An ability to apply engineering design to				
component, or process to meet desired	produce solutions that meet specified needs				
needs within realistic constraints such	with consideration for public health, safety,				
as economic, environmental, social,	and welfare, as well as global, cultural,				
political, ethical, health & safety,	social, environmental, and economic factors.				
manufacturable, & sustainable	social, environmental, and economic factors.				
(b) an ability to design and conduct	(6) An ability to develop and conduct				
experiments, as well as to analyze and	appropriate experimentation, analyze and				
interpret data	interpret data, and use engineering judgment				
interpret data	to draw conclusions.				
(g) An ability to communicate effectively.	(3) An ability to communicate effectively with a				
(g) An ability to communicate effectively.	range of audiences.				
(a) an understanding of professional and	(4) An ability to recognize ethical and				
(e) an understanding of professional and					
ethical responsibility (h) the broad education necessary to	professional responsibilities in engineering				
	situations and make informed judgments,				
understand the impact of engg	which must consider the impact of				
solutions in a global, economic,	engineering solutions in global, economic,				
environmental, & societal context	environmental, and societal contexts.				
(j) a knowledge of contemporary issues(i) a recognition of the need for, and an	(7) An ability to acquire and apply new				
ability to engage in life-long learning	knowledge as needed, using appropriate				
(d) on ability to function on	learning strategies.				
(d) an ability to function on	(5) An ability to function effectively on a team				
multidisciplinary teams	whose members together provide leadership, create a collaborative & inclusive				
	environment, establish goals, plan tasks, and				
(1r) on ability to use the test since statut	meet objectives.				
(k) an ability to use the techniques, skills,	Implied in 1, 2 and 6.				
and modern engineering tools					
necessary for engineering practice.					

Comparison of old ABET Student Outcomes a – k to new 1 - 7