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Simulation-Optimization (SO) Problem Statement

“Solve an optimization problem where the objective
functions/constraints have to be sampled."

minimize h(x)

subject to g(x) ≤ 0, x ∈ D;

where

– h : D → IR can only be estimated using
Hm(x) = m−1

∑m
i=1 Hj(x), where Hj(x) are iid random

variables with mean h(x);

– g : D → IRc can only be estimated using
Gm = m−1

∑m
i=1 Gj(x), where Gj(x) are iid random vectors

with mean g(x); and

– D ⊆ IRq is some region.
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SO Examples

Visit the simulation optimization library at
http://www.simopt.org.

http://www.simopt.org
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SO — Where do we stand?
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◮ Stochastic Approximation
(SA) and Sample-Average
Approximation (SAA) are
the main algorithm classes.

◮ SA has an enormous
amount of literature dating
back to 1951 — Robbins
and Monro’s paper [31].
Excellent survey articles
and books are widely
available, e.g., [23, 7, ?].

◮ SA has had many
resurgences, e.g., after 1997
paper by Polyak and
Juditsky [30]. Most current
work has been on
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Det. Constr. ◮ SAA appeared around
1991 [15, 34] as a way to
exploit advances in nlp and
sample-path structure. A
number of refinements are
popular now [17, 28].

◮ Most current work is on
dynamic sample-sizing,
parameter choice, and
solution quality
estimation [33, 32, 28, 5, 6].
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◮ Very mature existing
theory and solution
algorithms, see [16, 22].
Ready software is publicly
available.

◮ Ongoing research is mostly
on variations, e.g.,
incorporation of correlated
sampling and crn [13, 38],
incorporation of
economics [10, 9, 11], other
efficiencies [36, 14].
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◮ This question is relatively

new, with a surge in recent
work [3, 2, 4, 20, 35]

◮ Generally, ongoing work is
focused on appropriate
treatment of stochastic
constraints[27], optimal
budget allocation[20, 21],
and finite-time probabilistic
guarantees [3, 2].
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◮ This question, like finite
SO, has an enormous
amount of existing
literature, see [1] for an
overview.

◮ Algorithms usually involve
three steps: sampling
candidate solution(s);
estimating objective
function; and update
sampling strategy and
relevant estimators.

◮ Ongoing research is
predominantly about
balancing exploration and
exploitation (in various
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SO — Where do we stand?
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◮ Relatively specialized but
important problem class as
reflected by the fraction of
submissions in the
simulation library.

◮ The main (specialized)
algorithms are
COMPASS [18, 19, 39,
40],R-SPLINE [37], and
discretized SA [24].

◮ A strong need for
extensions to handle
stochastic constraints.
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SO Flavor of the Day

– The region D is finite but “large," and is categorical.

– Stochastic constraints are allowed.

– We seek a global minimizer.
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SO Flavor of the Day (in more convenient notation)

We consider

arg min
i=1,...,k

hi

s.t. gil ≤ γl, for all i = 1, . . . , k and l = 1, . . . , s

where k is a finite number of systems, s is a finite number of
constraints, and

◮ design 1 is the optimal design,

◮ hi and gil are unknown expectations,

◮ estimates H̄i of hi and Ḡil of gil may observed through
simulation as iid sample means of random variables Hi and
Gil, respectively,

◮ γl is a vector of known constants, and

◮ a unique solution exists.
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Solution Context and Main Questions

Solution Context:

1. System i is given fraction αi ≥ 0 of the total budget t.
Sample and construct estimators
(Hi,Gil), i ∈ {1, 2, . . . , k}; l ∈ {1, 2, . . . , s}.

2. The estimated optimal system is
1̂={i : i ∈ Γ̂,Hi ≤ Hj for all j ∈ Γ̂} where
Γ̂ = {i : Gil ≤ γl for l ∈ {1, 2, . . . , s}}.

The Main Question:

What allocation vector (α1, α2, . . . , αk) minimizes the
probability of false selection P(FS) = Pr{1̂ 6= 1}?
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Understanding Probability of False Selection P(FS)
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Understanding Probability of False Selection P(FS)
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Understanding Probability of False Selection P(FS)

P(FS) =

P










best estimated
infeasible

︷ ︸︸ ︷
(
∪s

l=1G1l > γl

)
∪
(
∪i 6=1

(
∩s

l=1Gil ≤ γl

)
∩
(
H1 > Hi

))

︸ ︷︷ ︸

best beaten by a system that is
estimated to be feasible










.
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Main Question (Restatement)

(i) Answering the question of identifying αi, i ∈ {1, 2, . . . , k}
such that P(FS) is minimized is in general very difficult.

(ii) Any allocation such that αi > 0 will ensure P(FS) → 0 as
t → ∞.

Noting (i) and (ii), we ask:

What allocation vector (α1, α2, . . . , αk) maximizes the
rate of decay of P(FS) to zero?
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10-minute Primer on Large Deviations

Let {Xi} be iid random variables with E[etX1 ] < ∞ for all t. Let
X(n) = 1

n

∑n
i=1 Xi. Then, for any set A, we know that

lim
n→∞

Pr{X(n) ∈ A} = 0 if E[X1] /∈ A.

Cramér’s Theorem [12] allows us to say more.

Pr{X(n) ∈ A} ≈ e−nI(x∗).

For (Borel measurable) sets A ⊂ IR with E[X1] /∈ A,

lim
n→∞

−1

n
log Pr{X(n) ∈ A} = inf

x∈A
I(x) = I(x∗),

where I(·) is called the rate function of iid averages of Xi.



Outline Background Problem Statement Primer Key Results Implementation Final Remarks

10-minute Primer on Large Deviations

Let {Xi} be iid random variables with E[etX1 ] < ∞ for all t. Let
X(n) = 1

n

∑n
i=1 Xi. Then, for any set A, we know that

lim
n→∞

Pr{X(n) ∈ A} = 0 if E[X1] /∈ A.

Cramér’s Theorem [12] allows us to say more.

Pr{X(n) ∈ A} ≈ e−nI(x∗).

For (Borel measurable) sets A ⊂ IR with E[X1] /∈ A,

lim
n→∞

−1

n
log Pr{X(n) ∈ A} = inf

x∈A
I(x) = I(x∗),

where I(·) is called the rate function of iid averages of Xi.



Outline Background Problem Statement Primer Key Results Implementation Final Remarks

10-minute Primer on Large Deviations

Let {Xi} be iid random variables with E[etX1 ] < ∞ for all t. Let
X(n) = 1

n

∑n
i=1 Xi. Then, for any set A, we know that

lim
n→∞

Pr{X(n) ∈ A} = 0 if E[X1] /∈ A.

Cramér’s Theorem [12] allows us to say more.

Pr{X(n) ∈ A} ≈ e−nI(x∗).

For (Borel measurable) sets A ⊂ IR with E[X1] /∈ A,

lim
n→∞

−1

n
log Pr{X(n) ∈ A} = inf

x∈A
I(x) = I(x∗),

where I(·) is called the rate function of iid averages of Xi.



Outline Background Problem Statement Primer Key Results Implementation Final Remarks

10-minute Primer on Large Deviations

Let {Xi} be iid random variables with E[etX1 ] < ∞ for all t. Let
X(n) = 1

n

∑n
i=1 Xi. Then, for any set A, we know that

lim
n→∞

Pr{X(n) ∈ A} = 0 if E[X1] /∈ A.

Cramér’s Theorem [12] allows us to say more.

Pr{X(n) ∈ A} ≈ e−nI(x∗).

For (Borel measurable) sets A ⊂ IR with E[X1] /∈ A,

lim
n→∞

−1

n
log Pr{X(n) ∈ A} = inf

x∈A
I(x) = I(x∗),

where I(·) is called the rate function of iid averages of Xi.



Outline Background Problem Statement Primer Key Results Implementation Final Remarks

Example. For Xi
iid normal(µ = 2, σ2 = 1) and µ < a = 2.5,

− lim
n→∞

1

n
log P{X̄ ∈ [a,∞)} = I(a) =

1

2
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10-minute Primer on Large Deviations

Cramér’s Theorem [12] holds in IRd as well. Suppose
(X(n),Y(n)) is constructed as iid averages of Xi,Yi with
E[esXi+tYi] < ∞.

Then, for (Borel measurable) set A ⊂ IR2 with
(E[X1],E[Y1]) /∈ A,

lim
n→∞

−1

n
log Pr{(X(n),Y(n)) ∈ A} = inf

(x,y)∈A
I(x, y) = I(x∗, y∗),

where I(·, ·) is called the rate function of iid averages of (Xi,Yi).

(Interpret above as Pr{X(n),Y(n) ∈ A} ≈ e−nI(x∗,y∗).)
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10-minute Primer on Large Deviations

Suppose E[Xi] < E[Yi] < γ, and we want to calculate the rate at
which Pr{X(n) > Y(n),Y(n) > γ}.

Then the above probablity can be written as
Pr{X(n)− Y(n) > 0,Y(n) > γ} giving the rate

lim
n→∞

−1

n
log Pr{X(n)− Y(n) > 0,Y(n) > γ} = inf

z>0,y>γ
I(z, y),

where I(·, ·) is the rate function of iid averages of (Xi − Yi,Yi).
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Rate of Decay of P(FS)

The decay rate (to zero) of the probability of false selection is:

− lim
t→∞

1

t
log P(FS) = min

(

min
l∈{1,2,...,s}

α1J1l(γl),min
i 6=1

Ri(α1, αi)

)

where

– J1,l, l ∈ {1, 2, . . . , s} is the rate of decay of the best system
being deemed infeasible;

– Ri(α1, αi) is the rate of decay of the ith system being
deemed feasible and beating the best system; and

–
Ri(α1, αi) = inf

xi≤x1,yi≤γ
{α1I1(x1) + αiIi(xi, yi)}.
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Back to the Main Question

What should the αi’s be to maximize the rate of decay of the
probability of false selection?

max
α1, ..., αk

min

(

min
l∈{1,..., s}

α1J1l (γl) , min
i 6=1

Ri (α1, αi)

)

subject to
k∑

i=1

αi = 1, α ≥ 0. (1)
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An Equivalent Reformulation

What should the αi’s be to maximize the rate of decay of the
probability of false selection?

max z s.t.

α1J1j(γj) ≥ z, j = 1, 2, . . . , l

Ri(α1, αi) ≥ z, i = 2, 3, . . . , k
r∑

i=1

αi = 1, αi ≥ 0. (2)
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Characterization of the Exact Solution

After writing the KKT conditions, the optimal fractions
(α∗

1, α
∗
2, . . . , α

∗
k) are obtained as the unique solution to the

following system.

α∗
1J1,l(γl) ≥ z∗, l ∈ {1, 2, . . . , s};

Ri(α1, αi) = z∗, i 6= 1;
∑

i 6=1

∂Ri(α
∗
1, α

∗
i )/∂α1

∂Ri(α∗
1, α

∗
i )/∂αi

= 1.
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As the number of systems tend to ∞ ...

As |Γ∗|+ |S∗
w| → ∞, the following hold.

(i)
α∗

i

α∗
1

→ 0 ∀i 6= 1.

(ii)

Ri(α
∗
1, α

∗
i )

α∗
i

=

score Si
︷ ︸︸ ︷

inf
xi≤h1,yi≤γ

Ii(xi, yi) .
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The Proposed Solution

Recall that the KKT conditions dictate equating the rates
Ri(α

∗
1, α

∗
i ) for i 6= 1. Using this and the previous result, we see

that

α∗
i

score Si
︷ ︸︸ ︷(

inf
xi≤h1,yi≤γ

Ii(xi, yi)

)

≈ α∗
j

score Sj
︷ ︸︸ ︷(

inf
xj≤h1,yj≤γ

Ij(xj, yj)

)

, i, j 6= 1.

Proposed Solution:

Choose allocations αj, j = 2, 3, . . . , k such that

αj ∝ S−1
j ,

where Sj = infxi≤h1,yi≤γ Ii(xi, yi).
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Two Examples.

1. If estimators are mutually independent normals,

Sj =

suboptimality
penalty

︷ ︸︸ ︷

1

2

(hj − h1)
2

σ2
I{hi > h1}+

s∑

l=1

constraint violation
penalty

︷ ︸︸ ︷

1

2

(gjl − γl)
2

σ2
l

I{gil > γl} .

2. If estimators are mutually independent Bernoullis,

Sj = E(h1,hi)I{hi > h1}+
s∑

l=1

E(gil, γl)I{gil > γl},

where E(a,b) = a log a
b
+ (1 − a) log 1−a

1−b
.



Outline Background Problem Statement Primer Key Results Implementation Final Remarks

Implementation

Outline of a sequential algorithm:

1. Collect δ0 observations from each system i ≤ k.

2. Set n = r × δ0.

3. Update the estimators Hi,Gil for i ≤ k, j ≤ s, the feasible
set estimator Γ̂, and the optimal solution estimator 1̂.

4. Update the score function estimators Ŝi, i 6= 1 and the
optimal allocations α̂

∗ = (α1, α2, . . . , αk).

5. Use α̂
∗ as a sampling distribution from which to collect the

next δ samples.

6. Set n = n + δ and go to step 3.
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Numerical Example

Problem Design:

1. Objective and constraint function estimators are mutually
independent and normal.

2. Number of constraints s = 1.

3. Number of systems k = 401, 901, 1601, 2501, 3601.

4. h1 = 0,g1,1 = 1.

5. |Γ| = 0.4(k − 1) + 1, γ = 2(|Γ| − 1)/
√

k − 1;

6. Variance parameters σ2 = σ2
1 = 9.
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Numerical Example
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Numerical Example

Optimality gap and computation times for equal allocation
(EA), proposed solution (CF), and exact solution (*).

k
∆z(αEA) ∆z(αCF) Time(αCF) Time(α∗)

26 5.661 0.94 0.01 s 0.978 s

101 3.926 0.488 0.011 s 1.526 s

401 2.453 0.227 0.014 s 9.785 s

901 1.807 0.140 0.019 s 54.809 s

1,601 1.439 0.099 0.027 s 227.746 s

2,501 1.195 0.069 0.037 s 615.115 s

3,601 N/A N/A 0.048 s N/A
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Numerical Example

The effect of constraints.

s
k = 901

∆z(αEA) ∆z(αCF) Time(αCF) Time(α∗)

1 1.807 0.140 0.019 s 54.809 s

5 1.907 0.134 0.031 s 1,691.612 s

10 1.933 0.131 0.047 s 1,696.179 s
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Numerical Example

Probability of false selection as a function of the budget for
k = 26 and k = 101.
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Concluding Remarks

1. We propose a simple solution for solving constrained SO
problems on large finite sets using score functions.

2. The score function is very easy to compute in many cases,
particularly when the underlying distributions are known or
assumed.

3. In general, this work should be seen as providing a
theoretical basis for allocation using a model.

4. Very large constrained SO problems have recently been
solved with surprising ease. (For example, a problem with
20, 000 systems and 100 constraints was solved recently
within about 20 seconds.)

5. The proposed solution might have ramifications for
continuous global simulation optimization, particularly
when using many processors.
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